Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Thorac Dis ; 15(3): 967-976, 2023 Mar 31.
Article in English | MEDLINE | ID: covidwho-2298801

ABSTRACT

Background: Respiratory syncytial virus (RSV) is one of the most common virus causing community-acquired pneumonia (CAP) in children. To guide the prevention, diagnosis and treatment of RSV, we aimed to analyze the epidemiology of RSV in hospitalized children with CAP. Methods: A total of 9,837 hospitalized children (≤14 years old) with CAP from January 2010 to December 2019 were reviewed. Using the real-time polymerase chain reaction (RT-PCR), the oropharyngeal swab specimens were collected and tested for RSV, influenza virus A (INFA), influenza virus B (INFB), parainfluenza virus (PIV), enterovirus (EV), coronavirus (CoV), human metapneumovirus (HMPV), human bocavirus (HBoV), human rhinovirus (HRV), and adenovirus (ADV) for each patient. Results: The detection rate of RSV was 15.3% (1,507/9,837). From 2010 to 2019, the RSV detection rate showed a wavy change (χ2=166.982, P<0.001), with the highest detection rate in 2011 (158/636, 24.8%). RSV can be detected throughout the year, with the highest detection rate in February (123/482, 25.5%). Children younger than 0.5 years old had the highest detection rate (410/1,671, 24.5%). The detection rate of RSV in male children (1,024/6,226, 16.4%) was higher than that in female children (483/3,611, 13.4%) (P<0.001). A proportion of 17.7% (266/1,507) of RSV positive cases were also co-infected with other viruses, and INFA (41/266, 15.4%) was the most common coinfection virus. After adjusting for potential confounders, the RSV-positive children were associated with increased risk of severe pneumonia [odds ratio (OR) 1.26, 95% confidence interval (CI): 1.04 to 1.53, P=0.019]. Moreover, children with severe pneumonia had significantly lower cycle threshold (CT) values of RSV than those without severe pneumonia (28.88±3.89 vs. 30.42±3.33, P<0.01). Patients with coinfection (38/266, 14.3%) had a higher risk of severe pneumonia than those without coinfection (142/1,241, 11.4%), but the difference was not statistically significant (OR 1.39, 95% CI: 0.94 to 2.05, P=0.101). Conclusions: The detection rate of RSV in CAP hospitalized children changed by years, months, ages, and sexes. CAP hospitalized children with RSV are more likely to develop severe pneumonia than those without RSV. Policy makers and doctors should make timely adjustments to prevention measures, medical resources and treatment options based on these epidemiological characteristics.

2.
J Med Virol ; : e28287, 2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2234636

ABSTRACT

Respiratory syncytial virus (RSV) is the most important virus that causes lower respiratory tract disease in children; efficient viral identification is an important component of disease prevention and treatment. Here, we developed and evaluated a ready-to-use (RTU) nucleic acid extraction-free direct reagent for identification of RSV (RTU-Direct test) in clinical samples. The limit of detection (LOD) of the RSV RTU-Direct test was consistent with the LOD of the standard test using extracted nucleic acids. The virus inactivation ability of RTU-Direct reagent was confirmed by viral infectivity assays involving RTU-Direct-treated samples containing RSV and human coronavirus OC43. RSV RNA stability was significantly better in RTU-Direct reagent than in conventional virus transport medium (VTM) at room temperature and 4°C (p < 0.05). The clinical performance of the RTU-Direct test was evaluated using 155 respiratory specimens from patients with suspected RSV infection. Positive agreement between the RTU-Direct test and the VTM standard test was 100% (42/42); negative agreement was 99.1% (112/113), and the kappa statistic was 0.968 (p < 0.001). The distributions of Ct values did not significantly differ between the RTU-Direct test and the standard test (p > 0.05). Overall, the RTU-Direct reagent can improve the efficiency and biosafety of RSV detection, while reducing the cost of detection.

3.
J Clin Virol ; 155: 105246, 2022 10.
Article in English | MEDLINE | ID: covidwho-1956199

ABSTRACT

Coronavirus is a type of RNA-positive single-stranded virus with an envelope, and the spines on its surface derived its official name. Seven human coronaviruses 229E, OC43, SARS, NL63, HKU1, MERS, SARS-CoV-2 can cause both a mild cold and an epidemic of large-scale deaths and injuries. Although their clinical manifestations and many other pathogens that cause human colds are similar, studying the relationship between their evolutionary history and the receptors that infect the host can provide important insights into the natural history of human epidemics in the past and future. In this review, we describe the basic virology of these seven coronaviruses, their partial genome characteristics, and emphasize the function of receptors. We summarize the current understanding of these viruses and discuss the potential host of wild animals of these coronaviruses and the origin of zoonotic diseases.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Animals , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Zoonoses
4.
Emerg Microbes Infect ; 11(1): 168-171, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1623181

ABSTRACT

HCoV-OC43 is one of the mildly pathogenic coronaviruses with high infection rates in common population. Here, 43 HCoV-OC43 related cases with pneumonia were reported, corresponding genomes of HCoV-OC43 were obtained. Phylogenetic analyses based on complete genome, orf1ab and spike genes revealed that two novel genotypes of HCoV-OC43 have emerged in China. Obvious recombinant events also can be detected in the analysis of the evolutionary dynamics of novel HCoV-OC43 genotypes. Estimated divergence time analysis indicated that the two novel genotypes had apparently independent evolutionary routes. Efforts should be conducted for further investigation of genomic diversity and evolution analysis of mildly pathogenic coronaviruses.


Subject(s)
Common Cold/epidemiology , Coronavirus Infections/epidemiology , Coronavirus OC43, Human/genetics , Genome, Viral , Genotype , Pneumonia, Viral/epidemiology , Base Sequence , Bayes Theorem , Child , Child, Hospitalized , Child, Preschool , China/epidemiology , Common Cold/pathology , Common Cold/transmission , Common Cold/virology , Coronavirus Infections/pathology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Coronavirus OC43, Human/classification , Coronavirus OC43, Human/pathogenicity , Epidemiological Monitoring , Female , Humans , Infant , Male , Monte Carlo Method , Mutation , Phylogeny , Pneumonia, Viral/pathology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Recombination, Genetic
5.
Emerg Microbes Infect ; 9(1): 246-255, 2020.
Article in English | MEDLINE | ID: covidwho-774889

ABSTRACT

Human coronavirus NL63 (HCoV-NL63) is primarily associated with common cold in children, elderly and immunocompromised individuals. Outbreaks caused by HCoV-NL63 are rare. Here we report a cluster of HCoV-NL63 cases with severe lower respiratory tract infection that arose in Guangzhou, China, in 2018. Twenty-three hospitalized children were confirmed to be HCoV-NL63 positive, and most of whom were hospitalized with severe pneumonia or acute bronchitis. Whole genomes of HCoV-NL63 were obtained using next-generation sequencing. Phylogenetic and single amino acid polymorphism analyses showed that this outbreak was associated with two subgenotypes (C3 and B) of HCoV-NL63. Half of patients were identified to be related to a new subgenotype C3. One unique amino acid mutation at I507 L in spike protein receptor binding domain (RBD) was detected, which segregated this subgenotype C3 from other known subgenotypes. Pseudotyped virus bearing the I507 L mutation in RBD showed enhanced entry into host cells as compared to the prototype virus. This study proved that HCoV-NL63 was undergoing continuous mutation and has the potential to cause severe lower respiratory disease in humans.


Subject(s)
Coronavirus Infections , Coronavirus NL63, Human/genetics , Respiratory Tract Infections/virology , Child, Preschool , China , Coronavirus NL63, Human/isolation & purification , Genotype , Humans , Infant , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL